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Abstract 

The National Assessment of Educational Progress (NAEP) employs an item response theory 

(IRT)–based latent regression estimation procedure to recover group-score proficiency 

estimates. At this latent regression stage, item parameter estimates out of the IRT calibration 

stage are needed to compute the likelihood function, and the current practice is to take the 

item parameter estimates as fixed and known without considering the uncertainty associated 

with these estimates. To evaluate if and to what extent this practice introduces additional 

uncertainty in the estimation process, we conducted a series of simulation studies to calculate 

the bias, standard error, and root mean square error associated with the final group-score 

estimates. Results suggest that the amount of additional variation unaccounted for by the 

current practice is not very large compared to the estimates based on the true item parameter 

values. However, the estimation process is associated with some difficulty recovering the lower 

end of the proficiency distribution, especially when the sample size is small. A better 

understanding of how to accurately recover this portion of the distribution would be an 

important research direction for the program to follow. 

Keywords: item response theory (IRT), IRT-based latent regression, calibration sample 

size, group-score estimates, proficiency estimates
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In its operational practice, the National Assessment of Educational Progress (NAEP) 

program employs an item response theory (IRT)-based latent regression method (Mislevy et al., 

1992) to estimate statistical properties of the overall population and subpopulations of interest. 

A high-level description of this estimation procedure is depicted in Figure 1. In this figure, the 

rectangles represent observed variables collected from the NAEP operations, such as students’ 

responses to the assessed cognitive items and their background information. The circles 

represent the two estimation stages (i.e., the IRT scaling stage that is carried out in PARSCALE 

[Muraki & Bock, 1999] and the latent regression stage that is carried out in DGROUP [Rogers et 

al., 2006]). The IRT scaling stage characterizes the dependency of item responses on latent 

proficiencies and establishes a common scale across years upon which the latent proficiencies 

are expressed. The latent regression stage characterizes the dependency of latent proficiencies 

on a set of contextual variables extracted from the background information. Because the latent 

proficiencies are not directly observable at the latent regression stage, students’ responses to 

the cognitive items are again involved as indicators of the latent proficiencies in the estimation 

process. 

Figure 1. Item Response Theory–Based Latent Regression 

Note. This item response theory (IRT)–based latent regression procedure was implemented in 
the National Assessment of Educational Progress (NAEP). 
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As indicated in Figure 1, the item parameter estimates out of the IRT scaling stage are 

needed in the latent regression stage, and the current practice is to take them as fixed and 

known in the later analysis stages where the latent regression parameters and the uncertainty 

of group-level results are estimated. As a result, the current operational estimation procedure 

does not account for the uncertainty associated with the item parameter estimates that could 

vary depending on the actual calibration sample size. Therefore, the standard error estimates 

of the reported group-score proficiency estimates are likely underestimated. With large sample 

sizes, such as the national and state combined assessments,1 ignoring this additional 

uncertainty may not matter much. However, for national-only assessments and special studies, 

which cannot afford a very large calibration sample, it is necessary to obtain a better 

understanding of the effect of varying calibration sample size on the group-score estimates and 

the corresponding standard error estimates. 

For national-only assessments, a minimum of 2,000 examinees per item is typically 

required by the NAEP assessment design guidelines. This convention was adopted in 1980s (Jia 

et al., 2010), and the required sample size was greater than the common guideline of 1,000 

examinees per item required to get stable estimates of item parameters for three-parameter 

logistic (3PL) models (Hambleton, 1989; Hulin et al., 1982; Lord, 1968). Such guidelines (i.e., a 

minimum of between 1,000 and 2,000 examinees per item) were mainly established for 

accurate recovery of item parameters for 3PL models and often evaluated with a focus on 

reporting individual scores. The relationship between IRT calibration sample size and the 

amount of error in item parameter estimates, as well as how that error adds to the uncertainty 

in group-score statistics, has not been as thoroughly investigated. 

For special studies, the sample size is frequently constrained by the budget and 

objectives of the study. As a result, the study sample size may not reach the NAEP operational 

guideline of 2,000 students per item. To investigate whether it is computationally feasible to 

scale NAEP data with a per-item sample size smaller than 2,000, Jia et al. (2010) drew random 

subsamples from the operational NAEP data and re-estimated several group-score statistics. 

Results from this pseudosimulation2 study indicated the possibility of reducing the minimum 

per-item sample size but did not quantify the impact in terms of the standard errors of group-
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score statistics. Given that the results from NAEP special studies often guide the future 

assessment design, it is important for the NAEP program to appropriately quantify different 

error components on the group-score proficiency estimates and establish more detailed 

guidelines on special study sample size. 

The current report documents a series of simulations designed to examine how 

uncertainty in item parameter estimates due to smaller per-item sample size may impact 

group-score estimates and corresponding standard errors. To control potential confounding 

factors, we started with a simplified population model that specifies the relationship between 

the latent proficiency and three contextual variables. The regression coefficients of the latent 

proficiency on these three contextual variables were estimated from the operational NAEP data 

and treated as the true values to evaluate the simulation results. Starting with this simplified 

condition makes the evaluation more straightforward in comparison to the situation where the 

true population model is not known. Per-item sample size is controlled as an experimental 

factor, and the objective is to see how the standard errors of the group-score estimates are 

affected as this experimental factor varies. 

The rest of the report will unfold as follows. The Simulation Design section describes 

implementation details of the simulations, and the Simulation Results section summarizes the 

main findings observed from these simulations. The Summary section concludes this study 

report and makes suggestions on future research directions.   

Simulation Design 

The current study consists of simulations in which student’s background information 

collected from the NAEP operational data sets were kept but their responses to the assigned 

operational items were simulated. This section will discuss design features implemented in 

these simulations. 

Matrix Sampling Design 

The subject domains in NAEP are specified broadly. To reduce the burden of any 

individual student selected to participate in the assessment while still ensuring the content 

coverage, the NAEP instrument is configured and administered through a matrix sampling 
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design (Johnson, 1992; Sirotnik, 1974). That is, the cognitive items are selected from a large 

item pool to form relatively short test booklets, each of which satisfies certain content 

requirements and statistical specifications. The number of items in each booklet is kept 

relatively modest (usually between 20 and 40 items, depending on the subject), and each 

sampled student takes only one booklet so that the individual testing time is kept within 

available limits (usually 60 minutes). The collection of all the booklets will cover the complete 

item pool.  

The current study followed the matrix sampling design implemented in the 2017 NAEP 

mathematics digitally based assessment (DBA) at Grade 8, which involved a total of 177 items 

after scaling.3 These items were distributed in 10 blocks with no overlap of items across blocks, 

and the 10 blocks were later assembled into 50 booklets4 through balanced incomplete block 

(BIB) spiraling (see Allen et al., 2001, p. 20). Sampled Grade 8 students were administered one 

of the 50 booklets, and they had 1 hour to complete the assigned booklet. To maintain this 

operational booklet structure, the current study first sampled students at the booklet level and 

then aggregated the 50 booklet samples to form a single study sample. This sampling process 

ensured the same booklet structure was used in both the operational assessment and the 

simulations, regardless of the per-item sample size. 

Obtaining True Item Parameters and True Ability Values 

The original 2017 NAEP mathematics DBA data contained about 144,000 records across 

the 50 booklets of consideration. Because three of the 50 booklets were identified as special 

forms that could be assigned to students who required certain accommodations, the sample 

distribution of these three booklets was slightly different from the overall sample. To facilitate 

the booklet-level sampling procedure (which will be described in detail below), we removed 

some of the accommodated records from these three booklets to make them more 

representative of the overall sample. As a result, the total sample size was decreased to around 

140,000. The reduced operational sample was taken as the student population in this study, 

from which samples of varying sizes were drawn. 

The true population model was defined as a mixture of seven subpopulations based on 

three contextual variables (i.e., students’ ethnicity, whether they were students with disabilities 
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[SDs], whether they were English language learners [ELLs]). That is, based on the background 

information collected in the 2017 operations, students were categorized into one of the 

following seven mutually exclusive subgroups: 

• Test takers who were SDs but not ELLs, regardless of their race/ethnicity 

• Test takers who were ELLs regardless of their race/ethnicity and SD status 

• Five race/ethnicity subgroups of test takers who were neither SDs nor ELLs 

• White 

• Black 

• Hispanic 

• Asian 

• Other 

These seven subgroups represent NAEP subgroups of different proficiency profiles. Note 

that the definition of these seven subgroups, especially the mutual exclusivity among them, is a 

deviation from operational analysis and simplifies the model structure implemented in the 

following analyses. 

There was an additional modification on the 177 operational items used in this study: 

We collapsed5 polytomous items down to binary items and used two-parameter logistic (2PL) 

models to estimate these modified items. This modification limited the analysis to 2PL and 3PL 

models and made the analysis a bit simpler. After these collapses, there were 104 3PL items 

and 73 2PL items. Besides, we assumed the 177 items all load on a single latent construct, 

simplifying the latent structure to be unidimensional. 

Using the modified operational data (i.e., total sample size being reduced to around 

140,000 and polytomous items being collapsed down to binary items), we conducted the IRT 

calibration in PARSCALE with a multigroup setup. Each student had a subgroup number as 

defined by the true population model specified above, and in total there were seven subgroups. 

Under the multigroup setup, PARSCALE estimated the mean and standard deviation for each of 

the seven subgroups, while the overall mean and standard deviation were constrained to be 0 
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and 1, respectively. Item parameter estimates obtained from this IRT calibration run were 

saved and used as the true item parameter values in the simulations. Table 1 summarizes the 

true a-, b-, and c-parameter values of these 177 items by item type. 

Table 1. Summary of True Item Parameters, by Item Type 

2PL items 
Item type N Mean (SD) Min Max 
a 73 0.79 (0.24) 0.28 1.45 
b 73 0.20 (1.41) -3.40 4.44 

3PL items 
a 104 1.04 (0.32) 0.25 2.27 
b 104 0.53 (0.73) -1.79 2.29 
c 104 0.17 (0.08) 0.04 0.49 

Note. 2PL = two-parameter logistic model; 3PL = three-parameter logistic model; SD = standard 
deviation; Min = minimum; Max = maximum. 

The computer program, PARSCALE, estimates item parameters by marginal maximum 

likelihood estimation procedure (Bock & Aitkin, 1981) and uses the expectation-maximization 

(EM) algorithm to solve the maximum likelihood equations. Prior distributions are imposed on 

item parameters with the following starting values: b-parameter, N(0, 22); a-parameter, 

lognormal(0, 0.52); and c-parameter, beta(11, 41).6 The locations of the prior distributions (but 

not the dispersion) are updated after each estimation cycle to reflect changes in the provisional 

estimates of the item parameters (Allen et al., 2001, Chapter 12). Omitted responses are 

treated as fractionally correct, and not-reached responses are treated as not presented in the 

calibration process. 

Then, for the seven subgroups, we conducted an intercept-only latent regression run 

(using DGROUP7) for each subgroup separately. Under the NAEP context, the latent regression 

model is specified as (Allen et al., 2001, Chapter 12), 

 𝜽𝜽 = Γ′𝒚𝒚 + 𝝐𝝐 , (1) 

where θ denotes a vector of latent proficiencies, y denotes a vector of contextual variables 

collected from the NAEP operations, Γ is the matrix consisting of the regression coefficients, 

and 𝝐𝝐 represents the error terms that are assumed to be multivariate normally distributed with 

mean zero and variance-covariance matrix Σ. In the current study, we assumed univariate 
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latent proficiency and conducted an intercept-only latent regression run for each subgroup. 

This means that the latent regression model (see Equation 1) was applied to each subgroup 

separately and a single intercept term was estimated for each subgroup. A separate variance 

term was estimated for each subgroup, which is different from the operational setup that 

assumes homogeneous variance across different subgroups. This intercept-only latent 

regression model was consistent with the multigroup setup used in the IRT calibration stage but 

much simplified from the operational model.  

As discussed before, the latent regression stage characterizes the dependency of latent 

proficiencies on the contextual variables. Therefore, the selection of contextual variables to be 

included in the estimation process is a critical decision. The current study, however, focused on 

a best case scenario in which a much-simplified true population model is known and specified 

in the estimation process. This simplification eliminates the effect of model misspecification 

and focuses the investigation on per-item sample size involved at the IRT calibration stage.  

The first set of plausible values8 (PVs) obtained from these seven intercept-only latent 

regression runs were taken as the true ability values in the following simulations. Table 2 

summarizes the true ability values by subgroups (on the 𝜃𝜃 scale established by the IRT 

calibration) and also lists the mean, standard deviation, and percentage of each subgroup at or 

above the three NAEP achievement levels.9 Corresponding statistics of the student population 

(i.e., the combination of the seven subgroups) are listed on the last row of Table 2. We will 

examine the recovery of these distributional statistics in the Simulation Results section. 

Table 2. Summary of True Ability Values, by Subgroup 

Subgroup Group size Mean SD  Basic Prof Adv 
White 65,081 (46%) 0.374 0.842 85.2% 46.7% 13.4% 
Black 20,547 (15%) -0.477 0.839 50.9% 13.9% 2.0% 
Hispanic  21,557 (15%) -0.091 0.822 68.9% 25.8% 4.7% 
Asian 6,489 (5%) 0.654 1.002 87.8% 58.3% 26.1% 
Other 5,928 (4%) 0.028 0.908 72.3% 32.5% 8.1% 
SD  12,505 (9%) -0.899 0.990 33.4% 9.3% 1.7% 
ELL 8,230 (6%) -0.954 0.866 29.8% 5.6% 0.6% 
Total 140,337 -0.015 0.996 69.4% 32.9% 9.0% 

Note. SD = standard deviation; Prof = proficient; Adv = advanced; SD = student with disabilities; 
ELL = English language learner. 
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Per-Item Sample Size 

Six levels of per-item sample size were considered in this study (i.e., 500, 1,000, 2,000, 

4,000, 10,000, and Everyone).10 At each per-item sample size level, students were sampled 

from the population and their responses were simulated using the true ability values and the 

“true” item parameter values. The simulated item responses together with the three contextual 

variables retained from the 2017 operation were used to estimate item parameters (i.e., IRT 

calibration stage) and corresponding group-score proficiencies (i.e., latent regression stage). By 

repeating this process 500 times, we obtained an estimate of the uncertainty/variation in the 

group-score estimates at each per-item sample size level.  

To help interpret the observed uncertainty, we included another estimation approach 

that does not involve the IRT calibration stage. That is, the simulated data were directly fitted 

to the latent regression stage while using the true item parameter values. This alternative 

estimation approach corresponds to the current practice that assumes the item parameters are 

known and ignores the additional uncertainty associated with the calibration process. By 

comparing the uncertainty estimates associated with this alternative approach that does not 

involve IRT calibration to the approach that involves both IRT calibration and latent regression, 

we could quantify the additional uncertainty that is due to using a finite calibration sample. We 

expected these two approaches (i.e., the one using true item parameter values and the other 

using estimated item parameters) to generate close estimation results at a large per-item 

sample size level. But at a small, more realistic per-item sample size, the approach of using the 

estimated item parameters was expected to be associated with larger uncertainty. The 

simulation process is summarized in the next subsection. 

Simulation Steps 

Step 1. Draw a stratified random sample11 with replacement from the student 

population at one of the six specified per-item sample sizes. The stratification variable is 

“booklet,” and the sampling process was carried out in this way to ensure a data structure 

mimicking the operational BIB design. 

Step 2. Simulate sampled students’ responses to the assigned items using their true 

ability values and the true item parameter values. 
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Step 3. Using the data generated from Step 2, conduct IRT calibration in PARSCALE with 

the previously described multigroup setup. 

Step 4. Transform the item parameter estimates from Step 3 to the common metric 

defined by the student population. Transformation detail is specified after the description of 

the simulation steps.  

Step 5. Using the data generated from Step 2 and the transformed item parameter 

estimates from Step 4, conduct seven latent regression runs with an intercept-only model, one 

for each subgroup. Conduct another set of latent regression runs with the data generated from 

Step 2 and the true item parameter values. The first set of latent regression runs generates 

estimation results based on the estimated item parameters, and the second set generates 

estimation results based on the true item parameter values. The same sample is used in these 

two sets of latent regression runs. 

Repeat Steps 1‒5 500 times at each per-item sample size. 

To resolve the indeterminacy in the θ scale, PARSCALE standardizes the item parameter 

estimates by setting the mean and standard deviation of the estimated θ scale to be 0 and 1, 

respectively. This standardization convention results in arbitrarily different scales for a single 

test if the test is calibrated with two different samples (Mislevy & Stocking, 1989). Step 4 was 

therefore implemented to convert the IRT scaling results across different replications to a 

common metric—in this case the metric on which the true item parameter values are 

expressed. A linear transformation based on lining up the means of the a- and b-parameters 

was employed, 

A = exp (𝜇𝜇(log(𝑎𝑎 )))
exp (𝜇𝜇(log(𝑎𝑎)))

 , (2) 

B = 𝜇𝜇(𝑏𝑏) − 𝐴𝐴𝜇𝜇(𝑏𝑏) , (3) 

where   and 𝜇𝜇(𝑏𝑏) represent the mean of the logarithm of the true a-parameters and 

the mean of the true b-parameters over the 177 items, and 𝜇𝜇(log(𝑎𝑎 )) and 𝜇𝜇(𝑏𝑏)  represent the 

mean of the logarithm of the estimated a-parameters and the mean of the estimated b-

parameters in a given replication. The transformed a- and b-parameters for this replication are 

𝜇𝜇(log(𝑎𝑎))
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𝑎𝑎 ∗ =
𝐴𝐴
 𝑎𝑎  and (4) 

𝑏𝑏 = 𝐴𝐴𝑏𝑏 + 𝐵𝐵 ∗  . (5) 

Equation 2, albeit different from the transformation constant A used in the usual 

mean/mean method (Kolen & Brennan, 2004), lines up the mean of a-parameters and results in 

more stable results than the mean/sigma method that uses the mean and standard deviation of 

the b-parameter estimates (T. C. Davey, personal communication, October 7, 2020). 

Evaluation Criteria 

The original objective of this study was to evaluate the uncertainty due to using a finite 

sample at the IRT calibration stage and to investigate how this uncertainty propagates through 

the latent regression stage and affects the uncertainty of final group-score estimates. The 

evaluation focus was on the change in standard errors of these group-score estimates as we 

varied the per-item sample size. However, the simulation results suggested that the size of the 

calibration sample not only affects the variability of the group-score estimates but also their 

accuracy. Based on this observation, we also considered estimation accuracy as one of the 

evaluation criteria. 

Let t represent the population value12 of a group-score statistic. At each per-item 

sample size, we computed simulation-based estimates of bias, standard error, and root mean 

square error to evaluate the accuracy and precision of an estimator of t 

 Bias = 
500

∑ 𝑡𝑡𝑖𝑖 − 𝑡𝑡500
𝑖𝑖=1

1  , (6) 

 SE =  1
499

∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡)500
𝑖𝑖=1  ̅ 2, (7) 

 RMSE =  1
499

∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡)2500
𝑖𝑖=1  , (8) 

where 𝑡𝑡𝑖𝑖  represents the estimate of t from the ith replication and  𝑡𝑡̅ represents the average of 𝑡𝑡𝑖𝑖  

over the 500 replications at a specific per-item sample size. By following the NAEP operational 

procedure, the estimator 𝑡𝑡𝑖𝑖  is an average of the estimated statistics over 20 sets of PVs. For 
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more details on the PV methodology, refer to Allen et al. (2001, Chapter 12). Also notice that 

for a group-score assessment like NAEP, the bias of an estimator is usually more impactful in 

comparison to its variability, as the bias affects the location of the group proficiency estimates 

and could interact in complicated ways with the linking process. 

Simulation Results 

The focus of the current study is to compare two estimation approaches: one using the 

true item parameter values in the latent regression stage (IRT Pop) and the other using the 

estimated item parameters in the latent regression stage (IRT Est). To provide another 

reference point in the comparison, we also included the group-score statistics estimates based 

on each sample’s true proficiency values and labeled it “Sample.” That is, after a sample of 

students was drawn at each replication, the sample estimator simply calculated the group-score 

proficiency estimates such as means and percentiles based on this sample’s true ability values 

without going through any estimation. In comparison, IRT Pop and IRT Est involved an 

estimation process using the simulated responses from this same sample. IRT Pop involved one 

additional estimation step (estimating the latent regression model using true item parameter 

values), and IRT Est involved two additional estimation steps (estimating the IRT parameters 

and estimating the latent regression parameters using the item parameter estimates). 

Therefore, including the sampled value as a reference point may help isolate the uncertainty 

due to the sampling of students in the simulation process from the additional uncertainty that 

could be attributed to the estimation processes, which is the focus of the current study. A 

summary of the definition of IRT Pop, IRT Est, and Sample, together with the population value, 

is provided in Table 3.  

The following subsections present groups of three subplots for each group-score 

statistics of interest: 

• comparison on the bias (top subplot), 

• comparison on the standard error (middle subplot), and 

• comparison on the RMSE (bottom subplot). 
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Table 3. Comparison of the Three Estimators Discussed in This Study, Plus Population Value 

Estimator Sampling IRT 
calibration 

Latent 
regression 

Summary 

Population 
value 

Not involved, 
based on population 

Not involved Not involved No sampling, 
no estimation steps 

Sample Yes Not involved Not involved Sampling, 
no estimation steps 

IRT Pop Yes Not involved Yes Sampling, 
one estimation step 

IRT Est Yes Yes Yes Sampling, 
two estimation steps 

Note. IRT = item response theory; IRT Pop = IRT population; IRT Est = IRT estimate. 

In each subplot in the figures that follow (i.e., Bias, SE, or RMSE), results corresponding 

to the six levels of per-item sample size are presented, and “PIN” at the top indicates the per-

item sample size. The x-axis labels the subgroups under comparison. The estimator based on 

true item parameter values is labeled as “IRT Pop” and marked with a red x, the estimator 

based on estimated item parameters is labeled as “IRT Est” and marked with a solid blue circle, 

and the sampled value is labeled as “Sample” and marked with a black triangle. The black 

horizontal line marks the value of zero on each plot, indicating no difference from the 

population value. The population values can be found in Table 2. The focus is to compare the 

accuracy and precision of IRT Pop and IRT Est at various per-item sample sizes. A brief 

description of the observations from each figure is provided in the next section. Observed 

patterns consistent with already discussed observations will not be repeated. 

Recovery of Population/Subgroup Means 

Bias Subplot  

In general, IRT Pop is an unbiased estimator of the student population (marked as 

“Total” in the subplots) and subgroup means, even at small per-item sample sizes (Figure 2). In 

contrast, IRT Est overestimates the student population and subgroup means at small per-item 

sample sizes and behaves more like the IRT Pop estimator as the per-item sample size 

increases. When the per-item sample size is 500, on average, the IRT Est estimator 

overestimates the population mean by an amount close to 3% of its standard deviation and 
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overestimates the ELL mean by an amount close to 6% of its standard deviation. Observing this 

bias due to using estimated item parameters, we conducted some further investigation on the 

IRT parameter estimates, which is summarized in the Recovery of IRT Parameters subsection. 

SE Subplot 

As expected, for both IRT Pop and IRT Est, the standard error decreases as the per-item 

sample size increases. The standard error of IRT Est is very close to IRT Pop, and both are only 

slightly larger than the standard error of Sample, even when the per-item sample size is small, 

suggesting that the additional variation due to the item parameter estimation process is not 

very concerning. Smaller subgroups, such as Asian, Other, SD, and ELL, are associated with 

somewhat larger additional variation compared to the larger subgroups. 

RMSE Subplot 

Similar to the SE subplot, for both IRT Pop and IRT Est, the RMSE decreases as the per-

item sample size increases, and the estimates for smaller subgroups are associated with larger 

RMSE. Based on the observations from the Bias and SE subplots, the difference in RMSE 

between IRT Pop and IRT Est can be largely attributed to the additional bias due to using item 

parameter estimates at the latent regression stage.  

Recovery of Population/Subgroup Standard Deviations 

Bias Subplot 

IRT Pop slightly overestimates lower performing subgroups’ standard deviation (such as 

SD and ELL subgroups) even at very large per-item sample size. IRT Est changes from 

underestimate to overestimate and behaves more like IRT Pop as the per-item sample size 

increases (Figure 3). 
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Figure 2. Recovery of Population and Subgroup Means 

 

 

 
Note. PIN = per-item sample size; IRT = item response theory; SD = students with disability; ELL 
= English language learner; RMSE = root mean square error; SE = standard error.  
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Figure 3. Recovery of Population and Subgroup Standard Deviations 

 
 

 
Note. PIN = per-item sample size; IRT = item response theory; SD = students with disability; ELL 
= English language learner; RMSE = root mean square error; SE = standard error. 
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SE Subplot 

The standard error of IRT Est is very close to that of IRT Pop, and both are greater than 

the standard error of Sample at smaller per-item sample size. The impact is more prominent for 

the smaller subgroups (i.e., Asian, Other, SD, and ELL) than the larger subgroups. The 

observation appears to suggest that there is additional variation due to the estimation process 

in general, but the additional uncertainty introduced is very small. 

RMSE Subplot 

Again, the difference in RMSE between IRT Pop and IRT Est can be largely attributed to 

the additional bias due to using estimated item parameters at the latent regression stage. 

Recovery of Percentage at or Above Achievement Levels 

In these plots, the x-axis labels subgroup names, as well as the population value (in 

parenthesis) of the percentage at or above certain achievement level for each subgroup 

(Figures 4, 5, and 6). 
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Figure 4. Recovery of Percentage at or Above the Basic Achievement Level 

 

 

 
Note. PIN = per-item sample size; IRT = item response theory; SD = students with disability; ELL 
= English language learner; RMSE = root mean square error; SE = standard error.  
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Figure 5. Recovery of Percentage at or Above the Proficient Achievement Level 

 

 

 
Note. PIN = per-item sample size; IRT = item response theory; SD = students with disability; ELL 
= English language learner; RMSE = root mean square error; SE = standard error.  
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Figure 6. Recovery of Percentage at or Above the Advanced Achievement Level

 

 

 
Note. PIN = per-item sample size; IRT = item response theory; SD = students with disability; ELL 
= English language learner; RMSE = root mean square error; SE = standard error. 
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Bias Subplot 

In general, IRT Pop can unbiasedly recover the percentage at or above the three 

achievement levels for the population and subgroups. IRT Est has larger bias for the percentage 

at or above the basic achievement level when the per-item sample size is small, and the 

direction of the bias is consistent with the observation that IRT Est overestimates the 

population and subgroup means at smaller per-item sample size. However, IRT Est can 

unbiasedly recover the percentage at or above the other two achievement levels, suggesting 

that the lower performing area of the ability distribution is where the estimation bias happens. 

SE Subplot  

The standard error of IRT Est is very close to that of IRT Pop, and both are very close to 

the standard error of Sample, suggesting no additional variation on top of the variation due to 

sampling. 

Recovery of Population’s 10th, 25th, 50th, 75th, and 90th Percentiles 

In addition to the population and subgroup means, standard deviations, and 

percentages at or above the three achievement levels, we also inspected the recovery of the 

population’s 10th, 25th, 50th, 75th, and 90th percentiles (Figure 7). The results are also 

summarized in a set of three subplots—Bias, SE, and RMSE—with the x-axis indicating the 

percentage numbers associated with these five percentile estimates. The most interesting 

pattern is found in the Bias subplot. As it shows, IRT Est overestimates all five percentiles at 

smaller per-item sample size, but the bias is much smaller for the 75th and 90th percentiles. As 

the per-item sample size increases, IRT Est becomes less biased but still underestimates the 

10th percentile. On the other hand, IRT Pop very slightly underestimates the 10th percentile, 

even at the largest per-item sample size (i.e., when everyone is used). 

This observation, in combination with the prior observations, suggests that the 

estimation procedure has some difficulty in accurately locating the position of lower performing 

individuals. As this could be related to whether the c-parameter of the 3PL items were 

accurately recovered or not, we examined the recovery of the IRT parameters at the considered 

per-item sample size levels by item type (i.e., 3PL vs. 2PL).  
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Figure 7. Recovery of Population’s 10th, 25th, 50th, 75th, and 90th Percentiles  

 

 

 
Note. PIN = per-item sample size; IRT = item response theory; RMSE = root mean square error; 
SE = standard error. 
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Recovery of IRT Parameters  

Figure 8, Figure 9, and Figure 10 plot the true c-parameter, b-parameter, and a-

parameter values against their estimates at the six per-item sample size levels under 

consideration for the 104 3PL items. Figure 11 and Figure 12 plot the true b-parameter and a-

parameter values against their estimates for the 73 2PL items. In these plots, the green cross 

represents the true item parameter value, the red circle represents the average of the item 

parameter estimates over 500 replications, and the blue band shows the range between the 

5th and 95th percentiles of these 500 estimates. The blue band can be seen as a 90% 

confidence interval around the mean estimate (i.e., the red circle). And the focus of the 

comparison is to see whether this blue band covers the true value represented by the green 

cross and to evaluate the difference between the true values (i.e., the green cross) and the 

estimates (i.e., the red circle). The items are ordered by the corresponding true parameter 

values from the smallest to the largest, and the numerical order is reflected by the x-axis. 

Figure 8 shows that at a smaller per-item sample size level, the c-parameter estimates 

are less variable than the true values, as the red circles are varying around the posterior mean 

of about 0.17 and deviating from the green crosses. This is also confirmed by the standard 

deviation estimate of the c-parameters being smaller than its true value, which is shown in 

Table 5. Therefore, for items with more extreme true c-parameter values, there is larger 

estimation bias, and the 90% confidence interval (i.e., the blue band) might not cover the true 

values. As the per-item sample size increases, the c-parameter estimates (i.e., the red circle) 

move closer to their true values (i.e., the green cross), except for a few items that are 

associated with low b-parameters. It is known that for very easy items, it is difficult to estimate 

the pseudoguessing parameter very accurately, because there are very few observations low 

enough to provide good information to locate the c-parameter (Lord, 1968, 1983; Thissen & 

Wainer, 1982).  
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Figure 8. Recovery of the c-Parameter of the 104 Three-Parameter Logistic (3PL) Items 

 

 

 

  

Note. IRT = item response theory; est = estimate; pop = population. 
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Figure 9 and Figure 10 show that for the 104 3PL items, the difference between the true 

item parameter values and the corresponding estimates decreases as the per-item sample size 

increases, but the magnitude of the difference is much more noticeable compared to the 73 

2PL items (Figure 11 and Figure 12), especially for the a-parameter. The difficulty in estimating 

the c-parameter could impact the estimation of the corresponding a- and b-parameter when 

the per-item sample size is small. For future studies, it would be interesting to follow this 

direction and investigate how to improve the estimation process to obtain accurate c-

parameters. Researchers (Baker, 1967; Lord, 1968; Lord & Wingersky, 1985) have suggested 

considering ability distributions with more weights on the two ends (e.g., uniform or U-shaped 

distribution) for parameter estimation purposes. Directly implementing a sampling procedure 

to generate such ability distributions might be difficult, but NAEP could consider more targeted 

testing in its future assessments to reduce guessing and nonresponses, which will increase the 

information collected from the cognitive items and help estimate the proficiency level of lower 

performing groups.  
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Figure 9. Recovery of the b-Parameter of the 104 Three-Parameter Logistic (3PL) Items 

 

 

 

 

 

Note. IRT = item response theory; est = estimate; pop = population. 
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Figure 10. Recovery of the a-Parameter of the 104 Three-Parameter Logistic (3PL) Items 

 

 

 

  

Note. IRT = item response theory; est = estimate; pop = population. 
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Figure 11. Recovery of the b-Parameter of the 73 Two-Parameter Logistic (2PL) Items 

 

 

 

  

Note. IRT = item response theory; est = estimate; pop = population. 
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Figure 12. Recovery of the a-Parameter of the 73 Two-Parameter Logistic (2PL) Items 

 

 

 

  

Note. IRT = item response theory; est = estimate; pop = population. 
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To help evaluate the comparison, Table 4 and Table 5 summarize the true values as well 

as the mean, standard deviation, minimum, and maximum of the item parameter estimates 

across the 500 replications at each per-item sample size level by item type.  

Table 4. Summary of Two-Parameter Logistic (2PL) Item Parameter Estimates at Different per-

Item Sample Size Levels 

2PL Items (73 items) 
IRT  

parameter 
Sample size Mean (SD) Min Max 

a True value 0.79 (0.24) 0.28 1.45 
500 0.81 (0.25) 0.22 2.07 

1000 0.80 (0.24) 0.21 1.98 
2000 0.80 (0.24) 0.19 1.93 
4000 0.80 (0.24) 0.22 1.68 

10000 0.79 (0.24) 0.23 1.60 
Everyone 0.79 (0.24) 0.23 1.55 

b True value 0.20 (1.41) -3.40 4.44 
500 0.20 (1.35) -5.00 5.96 

1000 0.20 (1.38) -5.64 5.93 
2000 0.20 (1.39) -4.91 6.33 
4000 0.20 (1.40) -4.26 5.80 

10000 0.20 (1.40) -3.97 5.59 
Everyone 0.20 (1.41) -3.72 5.20 

Note. SD = standard deviation; Min = minimum; Max = maximum.  
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Table 5. Summary of Three-Parameter Logistic (3PL) Item Parameter Estimates at Different 

per-Item Sample Size Levels 

3PL ITEMS (104 items) 
IRT  

parameter 
Sample size Mean (SD) Min Max 

a True value 1.04 (0.32) 0.25 2.27 
500 1.01 (0.35) 0.21 2.97 

1000 1.02 (0.34) 0.21 3.14 
2000 1.03 (0.34) 0.23 3.35 
4000 1.04 (0.33) 0.22 2.91 

10000 1.04 (0.32) 0.23 3.01 
Everyone 1.04 (0.32) 0.24 2.63 

b True value 0.53 (0.73) -1.79 2.29 
500 0.51 (0.75) -2.55 4.54 

1000 0.52 (0.75) -2.17 4.95 
2000 0.53 (0.74) -2.14 3.80 
4000 0.54 (0.73) -1.97 3.39 

10000 0.54 (0.72) -1.89 2.74 
Everyone 0.54 (0.72) -1.84 2.54 

c True value 0.17 (0.08) 0.04 0.49 
500 0.16 (0.04) 0.05 0.47 

1000 0.16 (0.04) 0.04 0.42 
2000 0.17 (0.05) 0.03 0.52 
4000 0.17 (0.06) 0.03 0.52 

10000 0.17 (0.07) 0.03 0.52 
Everyone 0.17 (0.07) 0.03 0.52 

Note. SD = standard deviation; Min = minimum; Max = maximum.   
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Summary 

This report summarizes a simulation study conducted to evaluate the impact of varying 

calibration sample size on the group-score proficiency estimates. The study focus was on the 

uncertainty (i.e., the additional variation in the final estimates that could be attributed to 

having a finite calibration sample). This uncertainty is not accounted for in the current NAEP 

practice as the item parameter estimates out of the IRT scaling stage are taken as fixed and 

known in the latent regression estimation stage. The simulation results suggested that when 

the per-item sample size is small, using the estimated item parameters does not greatly impact 

the standard error. It is the bias, the difference between the true ability values and the 

estimates, that is more concerning. The estimation process seems to have difficulty in 

accurately recovering the lower end of the distribution. 

An examination of the item parameter estimates shows that for 3PL items, when the 

per-item sample size is small, the c-parameter estimates are less variable and could be more 

biased for items with more extreme true c-parameter values. Compared to 2PL items, the a- 

and b-parameter estimates of the 3PL items are associated with larger bias at smaller per-item 

sample size levels. Further, for very easy items, even with very large per-item sample size, it 

could still be difficult to accurately estimate the pseudoguessing parameters.  

Given that it is more challenging to accurately estimate the lower end of the proficiency 

distribution, the program should pay more attention to the lower performing subgroups at 

various estimation stages. The program could consider sampling plans that emphasize the 

lower end and collect more data in this area to improve the IRT estimates. Another possibility is 

to implement more targeted/customized instruments in the field to reduce guessing and 

nonresponses, which will help improve the quality of the proficiency estimates. 

To extend the current study, we would suggest introducing the proportion of 3PL items 

as a factor in the simulations to study the effect of having more 3PL items in the instrument 

versus having fewer 3PL items. We conducted a preliminary follow-up study in this direction by 

creating two tests of the same length: one with 2PL items exclusively and the other with 3PL 

items exclusively. At a per-item sample size of 500, we observed that for the test with 3PL items 

exclusively its group-score estimates are associated with larger bias and larger standard error. 
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There are a few limitations of the current study. First, the current study was built upon a 

much-simplified population model that is very different from the models used in the NAEP 

operations. This simplification controls the confounding factors and helps establish a baseline 

for understanding the effects of varying calibration sample size on the group-score proficiency 

estimates. Future studies should consider introducing model complexity as an experimental 

factor. Second, in the current study, the results were estimated following the two-step 

procedure implemented in the NAEP operations (see Figure 1) and using PARSCALE for IRT 

calibration and DGROUP for latent regression estimation. Somewhat different results might be 

obtained if programs other than PARSCALE/DGROUP were used to carry out the two-step 

estimation process. Therefore, interpretation of the current study’s results should be limited to 

the context of the NAEP operational estimation procedure. 

Another limitation is that the current study did not consider the weight factor 

associated with the multistage sampling procedure. In NAEP operations, each sampled student 

carries a weight that reflects the probability of being selected by the sampling procedure. These 

weights are used in the IRT calibration stage, the latent regression stage, the computation of 

group-score statistics, and the corresponding standard errors. In addition, NAEP utilizes a 

replication method known as “jackknife” to estimate the variance due to sampling (Allen et al., 

2001). To simplify the comparison, the current study did not use weights in the estimation 

process and did not apply the jackknife method to estimate the sampling variance. The 

conceptualization of standard error is slightly different in the current study than in the NAEP 

operations. These factors (i.e., applying weights and jackknife procedures) should be 

considered in the simulation and estimation process in the future. 

To summarize, the program should consider better understanding the effect of having 

easy 3PL items in the instrument on the recovery of item parameters and proficiency estimates 

for low-performing subgroups. This investigation should be conducted under a simplified 

population model as the current study did. Once this effect is better gauged, the program could 

consider gradually introducing more complex models to help interpret the results in a context 

that is more similar to the NAEP operations. 
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Notes 
 

1 The NAEP reading and mathematics assessments at Grades 4 and 8 are usually national and 

state combined assessments, and the per-item sample size for these assessments can reach 

20,000 students. 

2 In a pseudosimulation, data are not generated “from scratch.” Instead, random samples are 

drawn from real testing data with some properties retained and some other properties 

simulated. It is a way to maintain certain structures/features of the real data that are difficult 

to simulate. Although the data-generating process in the current study follows the definition 

of pseudosimulation, we will use “simulation” in the rest of the report to describe the data 

generating process because the difference between the two terms is not meaningful for the 

current study. 

3 The 2017 NAEP mathematics Grade 8 assessment involved 179 items before scaling. Two 

items were removed in the scaling process due to content or model-data fit issues. These two 

items were not included in this study, making the total number of items 177. 

4 Each booklet consists of two blocks. 

5 In the NAEP operational analysis, polytomous items are fitted with generalized partial credit 

models (GPCM, Muraki, 1992). In the current study, nonzero categories of a polytomous item 

were collapsed into one category, while the original zero category remained the zero 

category. 

6 The prior on the c-parameter is a two-parameter beta distribution with its parameter values 

determined by the number of response options for an item and a weight factor of 50 (see 

Allen et al., 2001, Chapter 12). Single-selection multiple-choice items in Grade 8 mathematics 

assessments have five options, and the corresponding prior is beta (11, 41). 

7 The computer program DGROUP has several versions for researchers to choose depending on 

the latent structure they specify and the estimation method they want to use. For the current 

study, we used the version named BGROUP as the latent structure is unidimensional. 
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8 For a detailed description of PVs, see Allen et al. (2001, Chapter 12). 

9 NAEP achievement levels are performance standards that describe what students should 

know and be able to do. Results are reported as percentages of students performing at or 

above three NAEP achievement levels (i.e., NAEP Basic, NAEP Proficient, and NAEP Advanced). 

10 In the Everyone condition, there was no sampling process and every record in the student 

population was used. Students’ item responses were simulated in each replication. The 

Everyone condition is labeled as per-item sample size equals 28,000 in the plots for the 

convenience of creating ordered labels. 

11 NAEP employs a multistage probability sampling design that is more complex than the 

sampling design used in the current study. Besides, to properly reflect the difference in 

sampling probabilities, the NAEP operational estimation process involves the usage of 

sampling weights, while the current study made another simplification and did not use 

sampling weights.  

12 A population value is defined as the value of a group-score statistics calculated from the 

student population, using the true ability values. The population values of the group-score 

statistics under consideration are listed in Table 2. 


	Impact of Per-Item Sample Size on Group-Score Proficiency Estimates
	ETS Research Memorandum Series
	EIGNOR EXECUTIVE EDITOR
	ASSOCIATE EDITORS
	PRODUCTION EDITORS

	Abstract 
	Simulation Design 
	Matrix Sampling Design 
	Obtaining True Item Parameters and True Ability Values 
	Per-Item Sample Size 
	Simulation Steps 
	Evaluation Criteria 

	Simulation Results 
	Recovery of Population/Subgroup Means 
	Recovery of Population/Subgroup Standard Deviations 
	Recovery of Percentage at or Above Achievement Levels 
	Recovery of Population’s 10th, 25th, 50th, 75th, and 90th Percentiles 
	Recovery of IRT Parameters  

	Summary 
	References 
	Notes 




