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Unmasking Constructs Through New Technology, Measurement Theory, and 

Cognitive Science 

 
 Knowing What Students Know (Pellegrino, Chudowsky, & Glaser, 2001), a 

recent report from the National Academy of Sciences’ Board on Testing and Assessment, 

provides us with a compelling view of the future of educational assessment, a future that 

includes better information about student learning and performance consistent with our 

understandings of cognitive domains and of how students learn.  That future also 

promises a much tighter integration of instruction and assessment.  Realizing these 

ambitions depends on progress in the fields of cognition, technology, and assessment, as 

well as significant changes in educational policy at local and national levels. 

 The challenges to attaining the vision should not be underestimated.  Key 

examples of cognitive models go back a quarter of a century or more (e.g., Brown & 

Burton, 1978; Siegler, 1976).  Similarly, technology research efforts have demonstrated 

complex tasks that appear to assess problem-solving in particular domains much more 

authentically than traditional methods (Steinberg & Gitomer, 1996).  And, our 

psychometric models are clearly up to characterizing human performance on these more 

complex tasks (e.g., Almond & Mislevy, 1999).  Why then, are we still very much in the 

early formative stages of a new generation of educational assessment (Bennett, 1998)? 

 One of the major obstacles is scale.  Representing cognition in large domains 

remains a mammoth undertaking.  We do not yet have the technology to rapidly and cost 

effectively map the structure of knowledge for broad cognitive domains like the K-12 

curriculum, for example.  Designing tasks closely linked to these cognitive-domain 

structures is still a time-intensive enterprise reserved for a relatively small cadre of 
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experts.  The interpretation of evidence does not appear to face the same scaling 

limitations.  If we can adequately scale the cognition and observation legs of the 

assessment triangle, we believe that the interpretation leg will not provide as great an 

obstacle. 

 Even assuming we can build assessments that scale cost effectively, we are 

still left with important policy questions.  Will there be the political support for more 

textured assessments, or is there a comfort and familiarity with single summary scores, 

no matter how over-simplifying they may be?  Will there be the willingness to give 

greater time, and funding, for assessments that provide better information?  Time and 

economic constraints have had a major influence on the kinds of assessments that we 

currently practice.  And, will policymakers and educators give adequate attention to more 

formative assessments as a way of both describing student learning and the conditions 

affecting that growth?  The more revealing an assessment, the more threatening it can be, 

for it can uncover issues around opportunities to learn that can be fairly well hidden by 

our traditional test structures.   

 In considering these significant challenges, at ETS we are trying to 

reconceptualize assessment at a number of levels.  We’d like to share with you some of 

our colleagues’ efforts that vary on a host of dimensions; some of these efforts represent 

incremental improvements in our most traditional assessments, while others involve 

radically new approaches to assessment consistent with the most ambitious visions of 

Knowing What Students Know.  What these efforts have in common, though, is that they 

have used technology to help unmask the constructs that are the targets of assessment. 
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 What do we mean by the unmasking of constructs and why is this important?  

Standardized assessments, particularly, have often been characterized as irrelevant and 

arcane to the test taker.  The recent characterizations of the SAT® by Richard Atkinson, 

President of the University of California system, are a striking example.  Atkinson argues 

that the SAT is problematic, in part, because task types such as analogies are puzzle-like, 

limited in scope, and not directly linked to any California curricular frameworks.  Thus, 

he contends that preparing for such tests distracts students and teachers from focusing on 

the important learning goals articulated in the state’s K-12 content standards.  Atkinson 

also makes the point that access to the secrets of these tests is not equitably distributed in 

our society.   

 Such criticisms are not unique, and they point to a historical problem with 

traditional tests―the masking of constructs―that is, a lack of clarity of the meaning 

associated with performance.  On high stakes tests, such ambiguity causes overwhelming 

attention to particular task types and to test questions themselves.  In attending so 

nearsightedly to these test components, we lose sight of the constructs underlying the 

measures and why the original designers thought those components might be useful 

indicators of important knowledge and skills.  So, for example, while some might argue 

that verbal analogy items are irrelevant to content standards, most educators, including 

cognitive scientists, would agree that analogical reasoning is critical to learning and 

performance in virtually any discipline.  Similarly, although reading comprehension 

items might be criticized for a lack of surrounding context, few would argue that the 

comprehension of written text is anything but essential. 

3  



 

 The kinds of assessments envisioned in Knowing What Students Know are clearly 

designed to unmask the construct by making the link between learning goals and 

assessment practices much more explicit.  It is worth noting that much of the emphasis in 

this volume is on providing rich, instructionally relevant assessment feedback to students.  

We would argue that the unmasking must begin far earlier.  Students and teachers should 

have a much clearer sense of what is valued (i.e., the construct) through engagement with 

tasks more tightly coupled with content standards and instructional activities.  The 

assessment tasks should facilitate, rather than interfere with, an understanding of what is 

important. 

 We will briefly discuss three efforts that attempt to further unmask important 

constructs.  Recognizing the dominance of standardized assessments, and the non-trivial 

issues that must be addressed before the promise of a new generation of assessments is 

realized, we begin with two efforts focused on our more traditional tests.  In these 

projects, we investigate how we can help to make the constructs underlying standardized 

assessments more transparent to students and teachers, with the goal of altering the focus 

from the tasks themselves to the constructs they measure.  Indeed, the unmasking of 

constructs was not the primary goal of either of these efforts, but the unintended and 

fortunate consequence of attempts to improve traditional assessments.  Our third example 

is a prototype that illustrates the kind of purposefully designed assessment/instruction 

system that we believe represents the future of educational measurement.  All three 

efforts have been made possible through advances in technology and assessment, and 

through attention to the cognitive aspects of performance. 
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Our first project focuses on the production of greater diagnostic information for a 

test that was never designed to be diagnostic but to provide a summative judgment of a 

student’s overall academic preparedness for college-level work: the Preliminary 

Scholastic Aptitude Test/National Merit Scholarship Qualifying Test (PSAT/NMSQT).  

This project confronted two questions: (1) What skills are necessary for success on the 

PSAT/NMSQT (and in college), and (2) How can we communicate these skills, and ways 

to improve them, to students, teachers, parents, and counselors.  To answer the first 

question, ETS staff conducted cognitive analyses to identify the skills required to solve 

test items.  For the second question, they assembled three panels of math and English 

teachers, who refined the report language, provided suggested activities for skill 

development, and prioritized the skills. 

The essence of the approach was to extract, via psychometric modeling, 

diagnostic information from the pattern of item responses provided by the examinee.  

Each item requires for solution some small subset of the skills tapped by the test section.  

The psychometric modeling allows the skill information to be aggregated across items so 

that meaningful statements can be made from what is essentially an item-by-skill 

patchwork.  Uncertainty in that response pattern is accounted for by generating a mastery 

probability for each of the skills represented in the test.  The basic psychometric 

machinery used is derived from the rule-space method of Tatsuoka (1995). 

For the verbal section, 31 skills were identified.  Examples are understanding 

difficult vocabulary, recognizing a definition when it is presented in a sentence, 

comprehending long sentences, understanding negation in sentences, choosing an answer 

based on the meaning of the entire sentence, and understanding writing that deals with 
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abstract ideas.  Sixteen mathematical skills were defined, including using basic concepts 

in arithmetic problem-solving; creating figures to help solve problems; recognizing 

patterns and equivalent forms; understanding geometry and coordinate geometry; using 

basic algebra; making connections among math topics; dealing with probability, basic 

statistics, charts, and graphs; and applying rules and algorithms in algebra and geometry.  

Finally, the writing section was thought to tap 10 skills, such as using verbs correctly; 

recognizing improper pronoun use; following the conventions of word choice, phrases, 

and sentence construction; understanding the structure of sentences that contain abstract 

ideas; and understanding complicated sentences.  

As a result of each individual’s pattern of item performance, an enhanced score 

report is generated.  An example of such a report is given in Figure 1.  The report lists the 

three most promising skills for the student to work on and gives suggestions for 

improvement.  For a diagnosis of understanding difficult vocabulary, the suggestion is: 

Broaden your reading to include newspapers and magazines, as well as fiction 

and nonfiction from before the 1900s.  Include reading material that is a bit 

outside your comfort zone.  Improve your knowledge of word roots to help 

determine the meaning of unfamiliar words. 
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Figure 1.  Sample Enhanced Score Report for the PSAT.  
Note the bottom third of the report in which specific 
instructional recommendations are provided. 
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For a diagnosis of applying rules and algorithms in algebra and geometry, the suggestion 

is: 

Review algebra rules (such as exponents, solving equations and inequalities) and 

geometry rules (such as angles associated with parallel lines).  Become familiar 

with geometric formulas at the beginning of math sections, and practice problems 

that use them. 

There are several issues associated with the provision of such diagnostic feedback 

that can be informed by empirical analysis.  One key concern is whether the skills 

identified for students explain test performance.  Regressing PSAT/NMSQT scaled 

scores on mastery probabilities is a preliminary means of exploring this question.  Such 

regression produced multiple correlations of .82 for math and .92 for writing on one test 

form, and .97 for each section on a second form.  This initial finding suggests that the 

probabilities do a reasonable job of explaining test scores and, thus, of making more 

visible the constructs underlying the PSAT/NMSQT.  Another issue is whether the same 

set of skills would be identified for an examinee as needing improvement on other forms 

of the same test.  Preliminary analyses across two forms for the mathematical and writing 

sections suggest that the proportion of students who would receive the same “needs 

improvement/doesn’t need improvement” designation exceeds chance levels (.50) for the 

vast majority of skills.  However, these results also imply significant variability in the 

consistency of skill profiles.  Such variability is to be expected given that the 

PSAT/NMSQT was not designed with the requisite numbers of items to support fine-

grained, highly reliable diagnostics.  Some variability in this context may be acceptable, 

though, because the decisions based on the diagnostics—which concern what to study 
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next—are relatively limited in import and easily reversible.  What appears to be highly 

valued, though, is that the mystery of the PSAT/NMSQT (and SAT I) for many users is 

being revealed by more effective communication of the underlying constructs and by 

providing reasonable guidance that moves from test preparation to more construct-

relevant instruction.  Ultimately, the value of this approach will be determined by the 

extent to which students successfully engage in learning activities that develop these 

competencies. 

To be sure, the PSAT/NMSQT project represents only a first step.  This test was 

neither designed from a construct definition that would be meaningful to examinees nor 

intended to be diagnostic.  Given those facts, we are limited in how meaningful we can 

make the construct or how usefully we can guide instruction.  The challenge for the 

future is to design tests from inception so that examinees can understand both what is 

being measured and how to improve their performance on that underlying construct. 

Our second example derives from a pragmatic need to generate many assessment 

tasks efficiently and effectively, which we have begun doing through the use of Test 

Creation Assistants (Singley & Bennett, 2002).  We want not only to generate many 

assessment tasks but to be able to design tasks that have prespecified characteristics, 

including difficulty. To do this, we need to have a better understanding of the cognitive 

demands associated with particular tasks and task features.  Again, the focus here is on 

our traditional assessments, though the basic approach can be generalized to other types 

of assessment tasks.  The immediate goal is to automatically generate calibrated items so 

that costs can be reduced and validation is built into test development.  Items are 

generated from templates that describe a content class.  Each template contains both fixed 
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and variable elements.  The variable elements can be numeric or linguistic.  Replacing the 

template’s variables with values results in a new item. 

The concept of automatic item generation goes back to the criterion-referenced 

testing movement of the 1960s–1970s, which introduced the notion of generating items to 

satisfy content specifications and psychometric requirements (Hively, Patterson, & Page, 

1968).  Further progress was made through research on intelligent tutoring in which 

generation proceeded from cognitive but not psychometric principles (e.g., Burton, 

1982).  More recent work has merged the cognitive and psychometric perspectives and 

demonstrated successful, though still experimental, applications (e.g., Bejar, 1993; 

Embretson, 1998).   

The intent of these more recent efforts is to model both content and responses.  

This modeling can be done from strong or weak theory.  Strong theory posits the 

cognitive mechanisms required to solve items and the features of items that cause 

difficulty.  These approaches use design principles in manipulating item content to 

produce questions of desired difficulty levels.  Variation in difficulty may be obtained by 

creating different templates, each intended to produce items in a particular target range, 

or by creating a single template to generate items spanning the desired range. 

We use both weak and strong theories of performance within this general 

approach.  Weak theory is used when strong theory does not exist, which is true 

especially in the broad domains covered by most admissions tests, where the intensive 

cognitive analysis needed to develop strong theory is not practical.  Weak-theory 

approaches also attempt to generate calibrated items automatically, but they do so from 

design guidelines.  These guidelines constitute a theory of “invariance” that, in addition 
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to indicating which features affect difficulty, suggests which ones do not.  Empirically 

calibrated items spanning the target range are used as the basis for developing templates.  

Each template is then written to generate items of the same difficulty by varying the 

incidental features.  Figure 2 is a template—essentially an abstracted representation—for 

a mathematics problem, while Figure 3 illustrates an item generated from that 

representation. 

At ETS we have begun a research initiative to introduce automatic item 

generation into our large-scale testing programs.  The studies cover the mathematical, 

analytical, verbal, and logical reasoning domains.  The issues touch psychometrics (e.g., 

how does one calibrate items without empirical data?), security (e.g., at what point does a 

template become over-exposed?), and operations (e.g., what tools might be constructed to 

help test developers create and test item templates?). 
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Figure 2.  An abstracted representation of a mathematics task or item template. 
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Figure 3.  A specific task generated automatically from the template.  

 

How does automatic item generation help to unmask the underlying construct?  

Generation from strong theory is most helpful in this regard because item content is 

modeled in terms of the demands it places on the cognitive apparatus abstracted from the 

particulars of any item.  Thus, the structures and processes that underlie item 

performance must be made explicit.  Otherwise, item parameters will not be accurately 

predicted and the calibration goal will fail.  But generation from weak theory may be 

revealing also because it allows tests to be described, designed, and implemented not as a 

large collection of unrelated problems but, rather, in terms of a smaller set of more 

general problem classes with which we want students to be proficient.  Designing tests in 
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this way encourages instruction to focus on developing problem schemas that, according 

to cognitive theory, constitute the units into which all knowledge is packaged (Marshall, 

1995; Rumelhart, 1980). 

As an end state, what we would hope to do one day in the not too distant future is 

to make available to all assessment candidates an entire library of task models for all 

types of assessments.  Based on the item templates, each task model would define in a 

more easily understandable way an important mathematical problem class.  We would 

aspire to the goal that a full understanding of all task models constitutes a thorough 

understanding of the relevant domain.  Thus, memorizing task models would not be seen 

as beating the test, but as a legitimate way of learning the domain.  This, of course, 

implies that the set of task models must adequately represent the domain of interest. 

Finally, we turn to our work that has the potential to help us develop a 

fundamentally new generation of assessments.  The Evidence-Centered Design 

Framework (ECD) of Bob Mislevy, Linda Steinberg, Russell Almond, and others (e.g., 

Mislevy, Almond, Yan, & Steinberg, in press), provides tools and principles for 

developing assessments that, through every step of the design and delivery process, force 

a detailed thinking of the constructs to be assessed.   

While the two previous examples involve some significant retrofitting and 

elaboration of existing tests, ECD pushes us into thinking of assessment development as 

an integrated design process.  While ECD doesn’t prescribe any particular cognitive-

domain model, type of evidence, tasks, or scoring models, it does force designers into 

considering these aspects of assessment design very explicitly.  We will illustrate our 

points by referring to BIOMASS, a prototype system developed by Mislevy et al. (in 
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press) to assess understanding of transmission genetics.  By adhering to a disciplined 

design process, the developer of an assessment must explicitly consider, and represent, 

the following: 

The Domain – What concepts and skills constitute the domain, how are the 

various components related, and how are they represented?  The domain representation 

becomes the vehicle to communicate, through the assessment process, the valued nature 

of understanding.  One of the continuing criticisms of standardized assessments is that the 

domain representations that one would infer from looking at tests is often at odds with 

more robust conceptualizations of these domains.  So, if a domain is represented as a rich 

and integrated conceptual network, it would not be consistent to have an assessment that 

queried students about isolated facts.  An abstracted representation of the science domain 

can be viewed in Figure 4.  This representation highlights the interplay of domain-

specific conceptual structures, unifying concepts, and scientific inquiry understanding as 

all contributing to an integrated understanding of science. 
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Representing Science Standards (2)
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Figure 4.  An abstracted representation of science understanding (Mislevy et al., in 

press). 

 

It is also important to use the appropriate communicative methods and symbols 

for a given domain.  Certainly, we wouldn’t expect an assessment of musical skill to be 

strictly verbal and we wouldn’t expect an assessment of mathematics to not require the 

use of numbers.  Transmission genetics includes a complex conceptual structure as well 

as a set of domain-specific reasoning skills that are interleaved with genetics concepts.  In 

addition, there are symbolic formalisms that scientists use to represent concepts within 

the domain.   

The Evidence – What are the data that would lead one to believe that a student 

did, in fact, understand some portion of the domain model?  What would a student have 

to demonstrate to show that he or she could perform at a designated level of 
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accomplishment?  Clarifying what the evidence should be is important, not only for the 

shaping of tasks but because it should help students to understand in very clear ways 

what is expected.  For a richly represented domain, evidence would likely involve 

demonstrations of the ability to explain complex relationships.  In the case of 

transmission genetics, evidence of understanding can be gauged, in part, by the ability to 

explain generational patterns for a variety of plausible conditions.   

The Tasks – In light of domain and evidence requirements, assessment tasks can 

be developed.  If the tasks are driven by such requirements, there is a much greater 

likelihood that the tasks will be focused, relevant, and representative.  Note that the path 

of moving from domain, to evidence, to task is quite different from many traditional test-

development practices in which the availability and constraints of particular tasks shapes 

the assessment development.  Note too, that with an ECD approach the tasks are more 

visibly construed as vehicles to elicit evidence, not as the definition of the assessment 

itself.  (It is this same conceptual hurdle that must occur among teachers and students 

generally if assessment tasks are not to be the overwhelming focus of instruction.)  In 

BIOMASS, a small set of complex scenarios with multiple layers has been designed to 

elicit evidence about understanding of transmission genetics.  These scenarios, quite 

compatible with effective biology instruction as well, provide pieces of evidence relevant 

to different aspects of science understanding (e.g., disciplinary knowledge, model 

revision, investigation, etc.). For example, one scenario provides evidence of student 

understanding of investigations and disciplinary knowledge, a second offers evidence of 

both these aspects together with evidence of understanding of how students revise their 
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working mental models of phenomena (model revision) with new data, and a third gives 

evidence of model revision only. 

ECD also considers the interplay between these and other assessment 

components.  How are tasks selected from an array of potential tasks?  How are tasks 

presented amidst a set of constraints, including delivery options and time available?  How 

are complex responses evaluated?  How are response evaluations aggregated so that we 

can make statements about student performance with respect to the larger domain?  Each 

of these considerations, in conjunction with explicit representations of the domain, the 

evidence, and the tasks, can give students insight into what matters and how a person can 

demonstrate specific levels of accomplishment. 

 

Conclusion 

We believe that each of the three efforts—enhanced score reporting, automatic 

item generation, and evidence-centered design—is consistent with the vision espoused in 

Knowing What Students Know of forging a tighter integration of assessment with 

instruction.  Our particular tack has been to unmask the constructs we measure so that 

students can more easily improve their standing on them.  By forcing a clarification of the 

domain and a consistent set of representations that govern what students see and how 

they are evaluated, ECD gives us a methodology for doing exactly that.  A logical 

extension to ECD, automatic item generation, permits us to efficiently instantiate ECD’s 

domain representations in terms of higher order task classes, which can themselves 

become a legitimate way of learning the domain.  Finally, the technology of enhanced 

score reporting can be used to make clear the specifics of what a student needs to work 
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on to improve.  Clearly, these design, item creation, and reporting tools do not guarantee 

good assessment.  But they can help reduce, if not eventually eliminate, the mystery 

associated with traditional tests, as well as improve the outlook for future assessments. 
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