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Unmasking Constructs Through New Technology, Measurement Theory, and

Cognitive Science

Knowing What Students Know (Pellegrino, Chudowsky, & Glaser, 2001), a
recent report from the National Academy of Sciences’ Board on Testing and Assessment,
provides us with a compelling view of the future of educational assessment, a future that
includes better information about student learning and performance consistent with our
understandings of cognitive domains and of how students learn. That future also
promises a much tighter integration of instruction and assessment. Realizing these
ambitions depends on progress in the fields of cognition, technology, and assessment, as
well as significant changes in educational policy at local and national levels.

The challenges to attaining the vision should not be underestimated. Key
examples of cognitive models go back a quarter of a century or more (e.g., Brown &
Burton, 1978; Siegler, 1976). Similarly, technology research efforts have demonstrated
complex tasks that appear to assess problem-solving in particular domains much more
authentically than traditional methods (Steinberg & Gitomer, 1996). And, our
psychometric models are clearly up to characterizing human performance on these more
complex tasks (e.g., Almond & Mislevy, 1999). Why then, are we still very much in the
early formative stages of a new generation of educational assessment (Bennett, 1998)?

One of the major obstacles is scale. Representing cognition in large domains
remains a mammoth undertaking. We do not yet have the technology to rapidly and cost
effectively map the structure of knowledge for broad cognitive domains like the K-12
curriculum, for example. Designing tasks closely linked to these cognitive-domain

structures is still a time-intensive enterprise reserved for a relatively small cadre of



experts. The interpretation of evidence does not appear to face the same scaling
limitations. If we can adequately scale the cognition and observation legs of the
assessment triangle, we believe that the interpretation leg will not provide as great an
obstacle.

Even assuming we can build assessments that scale cost effectively, we are
still left with important policy questions. Will there be the political support for more
textured assessments, or is there a comfort and familiarity with single summary scores,
no matter how over-simplifying they may be? Will there be the willingness to give
greater time, and funding, for assessments that provide better information? Time and
economic constraints have had a major influence on the kinds of assessments that we
currently practice. And, will policymakers and educators give adequate attention to more
formative assessments as a way of both describing student learning and the conditions
affecting that growth? The more revealing an assessment, the more threatening it can be,
for it can uncover issues around opportunities to learn that can be fairly well hidden by
our traditional test structures.

In considering these significant challenges, at ETS we are trying to
reconceptualize assessment at a number of levels. We’d like to share with you some of
our colleagues’ efforts that vary on a host of dimensions; some of these efforts represent
incremental improvements in our most traditional assessments, while others involve
radically new approaches to assessment consistent with the most ambitious visions of
Knowing What Students Know. What these efforts have in common, though, is that they

have used technology to help unmask the constructs that are the targets of assessment.



What do we mean by the unmasking of constructs and why is this important?
Standardized assessments, particularly, have often been characterized as irrelevant and
arcane to the test taker. The recent characterizations of the SAT® by Richard Atkinson,
President of the University of California system, are a striking example. Atkinson argues
that the SAT is problematic, in part, because task types such as analogies are puzzle-like,
limited in scope, and not directly linked to any California curricular frameworks. Thus,
he contends that preparing for such tests distracts students and teachers from focusing on
the important learning goals articulated in the state’s K-12 content standards. Atkinson
also makes the point that access to the secrets of these tests is not equitably distributed in
our society.

Such criticisms are not unique, and they point to a historical problem with
traditional tests—the masking of constructs—that is, a lack of clarity of the meaning
associated with performance. On high stakes tests, such ambiguity causes overwhelming
attention to particular task types and to test questions themselves. In attending so
nearsightedly to these test components, we lose sight of the constructs underlying the
measures and why the original designers thought those components might be useful
indicators of important knowledge and skills. So, for example, while some might argue
that verbal analogy items are irrelevant to content standards, most educators, including
cognitive scientists, would agree that analogical reasoning is critical to learning and
performance in virtually any discipline. Similarly, although reading comprehension
items might be criticized for a lack of surrounding context, few would argue that the

comprehension of written text is anything but essential.



The kinds of assessments envisioned in Knowing What Students Know are clearly
designed to unmask the construct by making the link between learning goals and
assessment practices much more explicit. It is worth noting that much of the emphasis in
this volume is on providing rich, instructionally relevant assessment feedback to students.
We would argue that the unmasking must begin far earlier. Students and teachers should
have a much clearer sense of what is valued (i.e., the construct) through engagement with
tasks more tightly coupled with content standards and instructional activities. The
assessment tasks should facilitate, rather than interfere with, an understanding of what is
important.

We will briefly discuss three efforts that attempt to further unmask important
constructs. Recognizing the dominance of standardized assessments, and the non-trivial
issues that must be addressed before the promise of a new generation of assessments is
realized, we begin with two efforts focused on our more traditional tests. In these
projects, we investigate how we can help to make the constructs underlying standardized
assessments more transparent to students and teachers, with the goal of altering the focus
from the tasks themselves to the constructs they measure. Indeed, the unmasking of
constructs was not the primary goal of either of these efforts, but the unintended and
fortunate consequence of attempts to improve traditional assessments. Our third example
is a prototype that illustrates the kind of purposefully designed assessment/instruction
system that we believe represents the future of educational measurement. All three
efforts have been made possible through advances in technology and assessment, and

through attention to the cognitive aspects of performance.



Our first project focuses on the production of greater diagnostic information for a
test that was never designed to be diagnostic but to provide a summative judgment of a
student’s overall academic preparedness for college-level work: the Preliminary
Scholastic Aptitude Test/National Merit Scholarship Qualifying Test (PSAT/NMSQT).
This project confronted two questions: (1) What skills are necessary for success on the
PSAT/NMSQT (and in college), and (2) How can we communicate these skills, and ways
to improve them, to students, teachers, parents, and counselors. To answer the first
question, ETS staff conducted cognitive analyses to identify the skills required to solve
test items. For the second question, they assembled three panels of math and English
teachers, who refined the report language, provided suggested activities for skill
development, and prioritized the skills.

The essence of the approach was to extract, via psychometric modeling,
diagnostic information from the pattern of item responses provided by the examinee.
Each item requires for solution some small subset of the skills tapped by the test section.
The psychometric modeling allows the skill information to be aggregated across items so
that meaningful statements can be made from what is essentially an item-by-skill
patchwork. Uncertainty in that response pattern is accounted for by generating a mastery
probability for each of the skills represented in the test. The basic psychometric
machinery used is derived from the rule-space method of Tatsuoka (1995).

For the verbal section, 31 skills were identified. Examples are understanding
difficult vocabulary, recognizing a definition when it is presented in a sentence,
comprehending long sentences, understanding negation in sentences, choosing an answer

based on the meaning of the entire sentence, and understanding writing that deals with



abstract ideas. Sixteen mathematical skills were defined, including using basic concepts
in arithmetic problem-solving; creating figures to help solve problems; recognizing
patterns and equivalent forms; understanding geometry and coordinate geometry; using
basic algebra; making connections among math topics; dealing with probability, basic
statistics, charts, and graphs; and applying rules and algorithms in algebra and geometry.
Finally, the writing section was thought to tap 10 skills, such as using verbs correctly;
recognizing improper pronoun use; following the conventions of word choice, phrases,
and sentence construction; understanding the structure of sentences that contain abstract
ideas; and understanding complicated sentences.

As aresult of each individual’s pattern of item performance, an enhanced score
report is generated. An example of such a report is given in Figure 1. The report lists the
three most promising skills for the student to work on and gives suggestions for
improvement. For a diagnosis of understanding difficult vocabulary, the suggestion is:

Broaden your reading to include newspapers and magazines, as well as fiction

and nonfiction from before the 1900s. Include reading material that is a bit

outside your comfort zone. Improve your knowledge of word roots to help

determine the meaning of unfamiliar words.
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For a diagnosis of applying rules and algorithms in algebra and geometry, the suggestion
is:

Review algebra rules (such as exponents, solving equations and inequalities) and

geometry rules (such as angles associated with parallel lines). Become familiar

with geometric formulas at the beginning of math sections, and practice problems
that use them.

There are several issues associated with the provision of such diagnostic feedback
that can be informed by empirical analysis. One key concern is whether the skills
identified for students explain test performance. Regressing PSAT/NMSQT scaled
scores on mastery probabilities is a preliminary means of exploring this question. Such
regression produced multiple correlations of .82 for math and .92 for writing on one test
form, and .97 for each section on a second form. This initial finding suggests that the
probabilities do a reasonable job of explaining test scores and, thus, of making more
visible the constructs underlying the PSAT/NMSQT. Another issue is whether the same
set of skills would be identified for an examinee as needing improvement on other forms
of the same test. Preliminary analyses across two forms for the mathematical and writing
sections suggest that the proportion of students who would receive the same “needs
improvement/doesn’t need improvement” designation exceeds chance levels (.50) for the
vast majority of skills. However, these results also imply significant variability in the
consistency of skill profiles. Such variability is to be expected given that the
PSAT/NMSQT was not designed with the requisite numbers of items to support fine-
grained, highly reliable diagnostics. Some variability in this context may be acceptable,

though, because the decisions based on the diagnostics—which concern what to study



next—are relatively limited in import and easily reversible. What appears to be highly
valued, though, is that the mystery of the PSAT/NMSQT (and SAT I) for many users is
being revealed by more effective communication of the underlying constructs and by
providing reasonable guidance that moves from test preparation to more construct-
relevant instruction. Ultimately, the value of this approach will be determined by the
extent to which students successfully engage in learning activities that develop these
competencies.

To be sure, the PSAT/NMSQT project represents only a first step. This test was
neither designed from a construct definition that would be meaningful to examinees nor
intended to be diagnostic. Given those facts, we are limited in how meaningful we can
make the construct or how usefully we can guide instruction. The challenge for the
future is to design tests from inception so that examinees can understand both what is
being measured and how to improve their performance on that underlying construct.

Our second example derives from a pragmatic need to generate many assessment
tasks efficiently and effectively, which we have begun doing through the use of Test
Creation Assistants (Singley & Bennett, 2002). We want not only to generate many
assessment tasks but to be able to design tasks that have prespecified characteristics,
including difficulty. To do this, we need to have a better understanding of the cognitive
demands associated with particular tasks and task features. Again, the focus here is on
our traditional assessments, though the basic approach can be generalized to other types
of assessment tasks. The immediate goal is to automatically generate calibrated items so
that costs can be reduced and validation is built into test development. Items are

generated from templates that describe a content class. Each template contains both fixed



and variable elements. The variable elements can be numeric or linguistic. Replacing the
template’s variables with values results in a new item.

The concept of automatic item generation goes back to the criterion-referenced
testing movement of the 1960s—1970s, which introduced the notion of generating items to
satisfy content specifications and psychometric requirements (Hively, Patterson, & Page,
1968). Further progress was made through research on intelligent tutoring in which
generation proceeded from cognitive but not psychometric principles (e.g., Burton,
1982). More recent work has merged the cognitive and psychometric perspectives and
demonstrated successful, though still experimental, applications (e.g., Bejar, 1993;
Embretson, 1998).

The intent of these more recent efforts is to model both content and responses.
This modeling can be done from strong or weak theory. Strong theory posits the
cognitive mechanisms required to solve items and the features of items that cause
difficulty. These approaches use design principles in manipulating item content to
produce questions of desired difficulty levels. Variation in difficulty may be obtained by
creating different templates, each intended to produce items in a particular target range,
or by creating a single template to generate items spanning the desired range.

We use both weak and strong theories of performance within this general
approach. Weak theory is used when strong theory does not exist, which is true
especially in the broad domains covered by most admissions tests, where the intensive
cognitive analysis needed to develop strong theory is not practical. Weak-theory
approaches also attempt to generate calibrated items automatically, but they do so from

design guidelines. These guidelines constitute a theory of “invariance” that, in addition
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to indicating which features affect difficulty, suggests which ones do not. Empirically
calibrated items spanning the target range are used as the basis for developing templates.
Each template is then written to generate items of the same difficulty by varying the
incidental features. Figure 2 is a template—essentially an abstracted representation—for
a mathematics problem, while Figure 3 illustrates an item generated from that
representation.

At ETS we have begun a research initiative to introduce automatic item
generation into our large-scale testing programs. The studies cover the mathematical,
analytical, verbal, and logical reasoning domains. The issues touch psychometrics (e.g.,
how does one calibrate items without empirical data?), security (e.g., at what point does a
template become over-exposed?), and operations (e.g., what tools might be constructed to

help test developers create and test item templates?).
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How does automatic item generation help to unmask the underlying construct?
Generation from strong theory is most helpful in this regard because item content is
modeled in terms of the demands it places on the cognitive apparatus abstracted from the
particulars of any item. Thus, the structures and processes that underlie item
performance must be made explicit. Otherwise, item parameters will not be accurately
predicted and the calibration goal will fail. But generation from weak theory may be
revealing also because it allows tests to be described, designed, and implemented not as a
large collection of unrelated problems but, rather, in terms of a smaller set of more

general problem classes with which we want students to be proficient. Designing tests in
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this way encourages instruction to focus on developing problem schemas that, according
to cognitive theory, constitute the units into which all knowledge is packaged (Marshall,
1995; Rumelhart, 1980).

As an end state, what we would hope to do one day in the not too distant future is
to make available to all assessment candidates an entire library of task models for all
types of assessments. Based on the item templates, each task model would define in a
more easily understandable way an important mathematical problem class. We would
aspire to the goal that a full understanding of all task models constitutes a thorough
understanding of the relevant domain. Thus, memorizing task models would not be seen
as beating the test, but as a legitimate way of learning the domain. This, of course,
implies that the set of task models must adequately represent the domain of interest.

Finally, we turn to our work that has the potential to help us develop a
fundamentally new generation of assessments. The Evidence-Centered Design
Framework (ECD) of Bob Mislevy, Linda Steinberg, Russell Almond, and others (e.g.,
Mislevy, Almond, Yan, & Steinberg, in press), provides tools and principles for
developing assessments that, through every step of the design and delivery process, force
a detailed thinking of the constructs to be assessed.

While the two previous examples involve some significant retrofitting and
elaboration of existing tests, ECD pushes us into thinking of assessment development as
an integrated design process. While ECD doesn’t prescribe any particular cognitive-
domain model, type of evidence, tasks, or scoring models, it does force designers into
considering these aspects of assessment design very explicitly. We will illustrate our

points by referring to BIOMASS, a prototype system developed by Mislevy et al. (in
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press) to assess understanding of transmission genetics. By adhering to a disciplined
design process, the developer of an assessment must explicitly consider, and represent,
the following:

The Domain — What concepts and skills constitute the domain, how are the
various components related, and how are they represented? The domain representation
becomes the vehicle to communicate, through the assessment process, the valued nature
of understanding. One of the continuing criticisms of standardized assessments is that the
domain representations that one would infer from looking at tests is often at odds with
more robust conceptualizations of these domains. So, if a domain is represented as a rich
and integrated conceptual network, it would not be consistent to have an assessment that
queried students about isolated facts. An abstracted representation of the science domain
can be viewed in Figure 4. This representation highlights the interplay of domain-
specific conceptual structures, unifying concepts, and scientific inquiry understanding as

all contributing to an integrated understanding of science.
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Representing Science Standards (2)

Working
Knowledge

Unifying Integrated
Knowledge

Concepts
Disciplinary Knowledge--
Definitions, Concepts,
Models,
Relationships

Science
as Inquiry

Science

Unified as Inquiry
Knowledge

Unifying
Concepts

Figure 4. An abstracted representation of science understanding (Mislevy et al., in

press).

It is also important to use the appropriate communicative methods and symbols
for a given domain. Certainly, we wouldn’t expect an assessment of musical skill to be
strictly verbal and we wouldn’t expect an assessment of mathematics to not require the
use of numbers. Transmission genetics includes a complex conceptual structure as well
as a set of domain-specific reasoning skills that are interleaved with genetics concepts. In
addition, there are symbolic formalisms that scientists use to represent concepts within
the domain.

The Evidence — What are the data that would lead one to believe that a student
did, in fact, understand some portion of the domain model? What would a student have

to demonstrate to show that he or she could perform at a designated level of
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accomplishment? Clarifying what the evidence should be is important, not only for the
shaping of tasks but because it should help students to understand in very clear ways
what is expected. For a richly represented domain, evidence would likely involve
demonstrations of the ability to explain complex relationships. In the case of
transmission genetics, evidence of understanding can be gauged, in part, by the ability to
explain generational patterns for a variety of plausible conditions.

The Tasks — In light of domain and evidence requirements, assessment tasks can
be developed. If the tasks are driven by such requirements, there is a much greater
likelihood that the tasks will be focused, relevant, and representative. Note that the path
of moving from domain, to evidence, to task is quite different from many traditional test-
development practices in which the availability and constraints of particular tasks shapes
the assessment development. Note too, that with an ECD approach the tasks are more
visibly construed as vehicles to elicit evidence, not as the definition of the assessment
itself. (It is this same conceptual hurdle that must occur among teachers and students
generally if assessment tasks are not to be the overwhelming focus of instruction.) In
BIOMASS, a small set of complex scenarios with multiple layers has been designed to
elicit evidence about understanding of transmission genetics. These scenarios, quite
compatible with effective biology instruction as well, provide pieces of evidence relevant
to different aspects of science understanding (e.g., disciplinary knowledge, model
revision, investigation, etc.). For example, one scenario provides evidence of student
understanding of investigations and disciplinary knowledge, a second offers evidence of

both these aspects together with evidence of understanding of how students revise their
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working mental models of phenomena (model revision) with new data, and a third gives
evidence of model revision only.

ECD also considers the interplay between these and other assessment
components. How are tasks selected from an array of potential tasks? How are tasks
presented amidst a set of constraints, including delivery options and time available? How
are complex responses evaluated? How are response evaluations aggregated so that we
can make statements about student performance with respect to the larger domain? Each
of these considerations, in conjunction with explicit representations of the domain, the
evidence, and the tasks, can give students insight into what matters and how a person can

demonstrate specific levels of accomplishment.

Conclusion

We believe that each of the three efforts—enhanced score reporting, automatic
item generation, and evidence-centered design—is consistent with the vision espoused in
Knowing What Students Know of forging a tighter integration of assessment with
instruction. Our particular tack has been to unmask the constructs we measure so that
students can more easily improve their standing on them. By forcing a clarification of the
domain and a consistent set of representations that govern what students see and how
they are evaluated, ECD gives us a methodology for doing exactly that. A logical
extension to ECD, automatic item generation, permits us to efficiently instantiate ECD’s
domain representations in terms of higher order task classes, which can themselves
become a legitimate way of learning the domain. Finally, the technology of enhanced

score reporting can be used to make clear the specifics of what a student needs to work

18



on to improve. Clearly, these design, item creation, and reporting tools do not guarantee
good assessment. But they can help reduce, if not eventually eliminate, the mystery

associated with traditional tests, as well as improve the outlook for future assessments.
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